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Summary

My research program stems from solving Diophantine equations, polynomial equations with
integer coefficients for which integral solutions are sought. Though simple to state, Diophan-
tine equations often require tools from many different areas to solve, such as number theory,
algebra, combinatorics, graph theory, and analysis. My work thus far includes factoradic
happy numbers, families of Diophantine equations, Thue equations, b-invisible forests, con-
necting 2-adic valuations with trees, and privileged parking functions. These projects range
from work with academic colleagues to undergraduate student research projects. With the
versatility of the types of projects available, Diophantine equations are excellent for a cap-
stone project but also an introduction to mathematical research.

1 Introduction

Consider an integral function f : Z+ × Z+ × Z+ → Z given by f(x, y, z) = 2x + 3y − 4z. If I
am only interested in the integer solutions (x, y, z) to the equation f(x, y, z) = 0, then this
is an example of a Diophantine equation.

The main goal in Diophantine equations is to find all possible integer solutions.

In the example, suppose that a solution x, y, z 6= 0 exists in integers. Then 2x + 3y = 4z.
Now, the left hand side of the equation will always be odd while the right hand side is even,
a contradiction. Therefore there are no integer solutions to f(x, y, z) = 0. Though this type
of argument is a common technique used throughout Diophantine Analysis, the problems I
work on require more complicated methods.

A focus of study for hundreds of years, Diophantine Analysis, the study of Diophantine
equations and inequalities, remains a vibrant area of research. It has yielded a multitude
of beautiful results and has wide ranging applications in other areas of mathematics, in
cryptography, biology, and in physics. One of the most famous results is that of Fermat’s Last
Theorem, proven by Wiles and Taylor nearly 350 years after it was stated. The rich history
of Diophantine equations and flexibility to other fields lends itself well to collaborations and
can be appealing to mathematics majors, science majors, and some humanities majors.

I have published work on several families of Diophantine equations (see [7–9]). As an
example, families of equations such as X2 + D = Y N , where D is a product of powers of
a small number of primes have been studied for decades. Some of these families have no
integer solutions.
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Theorem 1 (G. and Grundman, [7]) Let N > 1 be an integer. Then the equation

NX2 + 2L3M = Y N

has no solutions with L, M , X, Y ∈ Z+ and gcd(NX, Y ) = 1.

Another kind of integral function, the happy function, can be found in my most recent
publication with Josh Carlson (Williams College), and Pamela Harris (Williams College) [3].
We describe an extension of the happy function, Se,! : Z+ → Z+ by Se,!(n) which is the sum
of the e-powers of the digits of factorial representation of n. Then n is a happy number if the
iterative process of repeatedly applying Se,! terminates in the number one. As an example,
2020 is a factoradic happy number since S5

2,!(2020) = 1. There are infinitely many happy
numbers. Here rather than finding and enumerating all of them, we prove the following
result on the length of sequences of factoradic happy numbers.

Theorem 2 (Carlson, G., Harris, [3]) For e ∈ {1, 2, 3, 4} and for any e-power factoradic
fixed point b of Se,!, there exists arbitrarily long sequences of e-power factoradic b-happy
numbers.

2 Current Work in Diophantine Analysis

Each additional area of my research draws upon some aspect of Diophantine Analysis. My
collaborators, faculty, graduate students, and undergraduates students, all bring valuable
tools of their own to the projects that I pursue. In the sections below, I describe those
projects.

2.1 Relative Thue Equations

Let F (X, Y ) be an irreducible homogeneous polynomial of degree n ≥ 3 with integer coeffi-
cients and let m be a nonzero integer. Then the Diophantine equation

F (X, Y ) = m

is called a Thue equation. In 1909, Axel Thue proved that Thue equations have only finitely
many solutions over the integers [17]. Individual such Thue equations of small degree such
as

X3 − 3X2Y − Y 3 = 1

can now be solved over the integers using algorithms that are implemented in various com-
puter algebra programs. (See [18] for details.) In this case, the only integer solutions of
the above equation are (x, y) = (1, 0), (0,−1), (−1, 1), (2, 1), (−3, 2), and (1,−3), as seen
in [19].
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Since 1990, starting with Thomas’s result [16], several infinite families of Thue equations
parametrized t ∈ Z, which can not be solved by computer algebra system, have been com-
pletely solved over the integers Of particular interest to me, is the extension of Thomas’s
work on parametrized families of the simplest cubic, quartic, and sextic forms, given as

F 3
t (X, Y )=X3−(t− 1)X2Y −(t+ 2)XY 2−Y 3,

F 4
t (X, Y )=X4−(t− 1)X3Y −6X2Y 2+(t− 1)XY 3+Y 4, and

F 6
t (X, Y )=X6−2(t− 1)X5Y −(5t+ 10)X4Y 2−20X3Y 3+5(t− 1)X2Y 4+(2t+ 4)XY 5+Y 6,

where t 6∈ Z is an imaginary quadratic number. The solutions of the relative Thue equation
F 3
t (X, Y ) = µ, where X, Y ∈ ZQ(t), and µ is a root of unity in ZQ(t) can be found in the work

of Heuberger, Pethő, and R.F. Tichy [11], and Heuberger [12]. They separately used the
hypergeometric method and Baker’s method to solve that family of relative Thue equations.

Now, Daniel Wisniewski (DeSales University), postdoctoral student Bernadette Faye
(University Gaston Berger of Saint Louis, Senegal), graduate student Benjamin Earp-Lynch
(Carelton University, Canada) and I are adapting the hypergeometric method, Baker’s
method, Padé approximations, combining them with results more advanced computational
work to complete the following project.

Theorem 3 (Earp-Lynch, Faye, G., Wisniewski) Let t be an imaginary quadratic in-
teger with |t| ≥ 163. Then family of Thue equations

F
(4)
t (X, Y ) = X4 − (t− 1)X3Y − 6X2Y 2 + (t− 1)XY 3 + Y 4 = µ

for µ a root of unity in Q(t) has no solutions (X, Y ) ∈ O2
Q(t) with |Y | ≥ 2.

More recently Gaál, Jadrijević, and Remete [6] solved the above quartic and sextic fami-
lies of Thue equations F k

t (X, Y ) = µ for k = 4, 6 over the imaginary quadratic number field
with the parameter t ∈ Z. However, since they restrict their attention to integer parameters,
their methods are quite different than our own.

2.2 2-Adic Valuation of n in a Tree

Let n = x2 + 7 be an integer. What is the minimal x ∈ Z+ so that the 2-adic valuation of
n, the exact number of 2’s that divide x2 + 7, is known to be c ∈ Z+ for some fixed c? This
question can be formulated as a Diophantine equation.

Problem 1 For a given c ∈ Z+, find a formula for the minimal integer solutions (x, y) of

x2 + 7 = 2cy.

Maila Brucal-Hallare (Norfolk State University), Bianca Thompson (Westminster Col-
lege), undergraduate student Ryan Riley (Williams College), and I use computational meth-
ods to devise a recursive algorithm in terms of c. This computational information can be
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Figure 1: 2-adic valuation of n

viewed in an infinite binary tree. Note that this is an incomplete image. We would label
each level or horizontal line of nodes in the tree, starting with level 0 at the top. Also, for
levels beyond the third one, there will be exactly four nodes at every level (not pictured in
Figure 1). Aside from the topmost node, which is the root of the tree, the labels on the nodes
correspond to the value of c for the leaves of the tree. The other nodes are labeled with a
lower bound on c. We can determine x, and subsequently y, from this tree from labeling the
branches in each level.

Using defective Lucas pairs, a Diophantine equation technique, we next aim to find a
closed formula for solutions (x, y). A pair of algebraic integers is called a Lucas pair if their
quotient is not a root of unity and their product and sum are nonzero coprime integers.
The Lucas pair is called t-defective, for t ∈ Z+, if the pair has a certain property depending
on the divisors of a number constructed from the Lucas pair. For almost all t ∈ Z+, the
t-defective Lucas pairs have been enumerated [2]. Comparing a t-defective Lucas pair for
some t, constructed from a hypothetical solution, to the list of known defective Lucas pairs
can lead to finding all solutions to the Diophantine equation above.

2.3 From b-Visible to Visible

Imagine that you were standing at the edge of a forest in which the trees were all planted
only on vertices of the integer lattice. Marking the southwestern most corner of the forest
as the origin, where you are standing, all the trees fall on points of the form (r, s) where r,
s ∈ Z+. Looking at the forest, you notice that some trees are visible and some are hidden
from view. This line of sight can be modeled by a linear function through the origin, the
solid line on Figure 2. If our sight was mapped in curves instead, as in the dotted line
in Figure 2, which trees in the lattice would now be visible and invisible? To answer this
question Goins, Harris, Kubik, and Mbirika [10] define line of sight along curves of the form
axb for b ∈ Z+ fixed. Then integer lattice point (r, s) is called b-visible from the origin if it
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Figure 2: b-visibility of a 2× 2 forest

lies on some curve of the form axb, for some a ∈ Q and if there are no other integer lattice
points blocking the view of that point. Points are b-invisible if they are not b-visible. We
ask the natural question to follow this.

Problem 2 Given a specific sized rectangular forest, how close to the origin can we find a
b-invisible forest of that size?

For linear visibility, b = 1, the minimum distance has been bounded by Laishram and
Luca [13]. With my Williams College colleagues Josh Carlson, Pamela Harris, Haydee Lindo,
and graduate student Santiago Estupiñan Salmanca (Universidad de los Andes, Colombia),
I am generalizing this to b-invisible rectangles using an integral function to characterize
a relationship between b-visible and 1-visible points. For b ∈ Z+, define a function fb :
Z+ × Z+ → Z+ × Y , where Y = {y ∈ Z+ : y is square-free}, by

fb(r, s) = (r,
∏

p prime
pb|s

p).

The point (r, s) is b-visible if and only if fb(r, s) is 1-visible. If (x, y) ∈ Z+ × Y , then the
preimage f−1b (x, y) = {(x, ayb) ∈ Z+ × Z+ : a is b-power free}. Together, we are examining
the preimage of 1-visible points to find ways to use the known bounds on 1-invisible rectangles
to bound the b-invisible rectangles.

2.4 Privileged Parking Functions

Introduced to me by Pamela Harris, as part of the AIM UP REU program, undergrad-
uate students Saisha Goboodun (Williams College), Sasha Ruth Sepulveda (University of
Arizona), Jingyi Wu (Mount Holyoke College), and I consider a generalization of parking
functions called privileged parking function. Though at different institutions, we will continue
this work during the upcoming semester.
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Generally, a parking function is a sequence of parking spot preferences for a list of cars
to park along a one way street. Privileged parking functions allow for the cars to back up
a specific amount to find a parking spot depending on their order in line. Figure 3 created
by Jingyi Wu describes the choices that each car has as they are looking for a parking spot.
Specifically, the i-th car in a line of n ∈ Z+ cars to park along the street can back up at

Figure 3: Privileged Parking Function Flow Chart

most n− i spots for 1 ≤ i ≤ n.
There are several ways to define generalizations that allow backing up, see [4] for exam-

ples. We explore the relationship between privileged parking functions and other types of
generalizations of parking functions in order to determine the exact number of privileged
parking functions for a given n ∈ Z+.

Problem 3 Find a closed formula for the number of privileged parking functions.

We have begun by programming python to find all privileged parking functions for small
values of n. The sequences of number of privileged parking functions for a given n is not
a known sequence in OEIS. The techniques from Diophantine analysis, creating integral
functions, lend themselves well to working on this combinatorial problem of counting different
ways that we can parking n cars.

3 Future Opportunities for Students

There are many places to include undergraduate, graduate students, and faculty in my
research program depending on their mathematical background. With today’s technologies
all of these collaborators may be at different institutions around the world. Below are
projects that I plan to pursue.
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3.1 Relative Thue Inequalities and Continued Fractions

One natural way to continue from Thue equations is to replace the equality with an inequality.
For example, Lettl, Pethő, and Voutier [14] solve the families F k

t (X, Y ) ≤ p(t) over the
integers, where p(t) is an integral polynomial of t ∈ Z, and k = 3, 4, 6 as in Section 2.1.
What if we consider relative Thue inequalities?

Project 1 For an imaginary quadratic integer t, find all solutions (x, y) ∈ Z2
Q(t) to the

relative Thue inequality |F 4
t (X, Y )| ≤ 6|t| − 7.

This project will require implementing continued fractions on non-Euclidean imaginary
quadratic fields. This area of research is still quite new and is Daniel E. Martin’s most
recent work [15]. Undergraduate student Jason Meintjes (Williams College) and I have been
studying Martin’s work. By explicitly computing of the constants demonstrated to exist
in Martin’s work, we will be able to solve the above Thue inequality by synthesizing and
extending with other known methods.

3.2 SAGE Programming in Cryptography

Amy Feaver (The King’s University, Canada) and I led a cryptography project [1] with
undergraduate students to create an interactive sage wiki page to allow users to explore and
program with different cryptosystems. The goals of the project are to create a platform for
students to learn some basic cryptography, to develop SAGE programming skills, as well as
to provide another resource for professors teaching cryptography in upcoming semesters.

Project 2 Create more interactions for modern cryptosystems and refine the code used for
the classical cryptosystems.

This project allows students to learn basic concepts of programming in SAGE while also
learning the basics of cryptography with the addition of creating a public facing product.

3.3 Extensions of Diophantine Equations

Lastly, I list a few Diophantine equations projects that are specifically designed for under-
graduate students.

Project 3 Suppose k, n, x, y ∈ Z+ such that n > 1 and

nx2 + 32k = yn

with gcd(nx, y) = 1. If n ≡ 7 (mod 8), prove that y is odd. Given that nu2 + v2 = ys and
x
√
−n + 3k = ±(u

√
−n + v)t such that n = st, t > 1, and gcd(u, v) = 1, prove that 3|u or

3|v. Given γ = 3k + u
√
−n and δ = −3k + u

√
−n, prove that (γ, δ) is a t-defective Lehmer

pair. Prove that t 6= 5.
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Project 4 Suppose x, y, z ∈ Z+ such that

(x5 − 2)(y5 − 2) = (z5 − 2)2.

Given that α = 5
√

1/(x5 − 1) and β = y/z2, can you prove that β is a convergent of the
continued fraction expansion of α. Given that β = pJ/qJ and given an upper bound for z,
derive an upper bound for qJ . Further, given an upper bound for z, derive a lower bound for
the partial quotients of α. Use a computer to calculate the first ten partial quotients, aj of
α. Compute qj of α for 1 ≤ j ≤ 10.

I look forward to sharing the richness and depth of Diophantine analysis with students
and exploring other opportunities for research based on student interest.
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